

In-Slab Hydronic Radiant Heating — Installation Manual (Slab-on-Grade)

Intended Audience: Contractors, builders, HVAC, concrete, and flooring professionals **Applies To:** Hydronic radiant tubing embedded in concrete slabs-on-grade for residential and light commercial projects.

1. Purpose, Scope, and Responsibilities

This manual provides end-to-end instructions for planning, installing, testing, and commissioning in-slab hydronic radiant heating systems on concrete slabs-on-grade.

 Installer responsibilities: Follow all applicable building, plumbing, mechanical, electrical, and energy codes; observe manufacturer instructions for all components; comply with the structural engineer's details and the design professional's load calculations.

- Design responsibilities: Heat-loss calculations, loop layout and lengths, manifold zoning, pump selection, balancing targets, and control strategy are by the designer of record.
- **Safety:** Use appropriate PPE; lockout/tagout electrical; never pressure-test with flammable gas; follow confined-space and silica exposure rules.

2. System Overview

A closed-loop hydronic system circulates tempered water through oxygen-barrier tubing embedded in the concrete slab. The slab stores and releases heat to the space, providing quiet, uniform comfort.

Key principles:

- **Insulation matters.** Continuous under-slab and edge insulation reduce heat loss and improve response.
- **Tube depth matters.** Keep tubing at or below mid-depth with adequate concrete cover (see Section 9).
- Even surface temps. Counterflow spirals and balanced loops help avoid hot/cold streaking.
- **Controls.** Outdoor reset or mixing controls limit supply temperature and protect floor coverings.

3. Materials (Typical)

- **Tubing:** Oxygen-barrier PEX or PEX-AL-PEX, 3/8"–3/4". Residential slabs commonly use 1/2". Observe the manufacturer's minimum bend diameter and pressure/temperature ratings.
- **Manifolds:** Supply/return manifold with isolation valves, balancing flow meters, purge/drain points, and automatic air vent. Cabinet optional.
- **Fittings:** Eurocone-style or other compatible compression fittings matched to tubing size/type.
- **Fastening:** Plastic ties, wire ties, or clips compatible with reinforcement; concrete-rated anchors/stakes as required.

- **Insulation:** Rigid foam rated for the slab load (compressive strength per structural requirements); perimeter and field insulation per energy code/climate.
- **Vapor Retarder:** Polyethylene or composite membrane suitable for under-slab use; seams taped/sealed; penetrations sealed.
- **Reinforcement:** Welded wire reinforcement (WWR) and/or deformed bars per structural drawings; chairs/spacers to position steel mid-depth.
- **Penetration Protection:** Corrugated sleeves or conduit at slab entries and where tubing crosses joints; long-sweep elbows for vertical risers.
- **Controls & Heat Source:** Boiler or water heater, mixing valve or injection/mixing pump, thermostats/actuators, and safety devices per design.

4. Tools & Equipment (Recommended)

- · Tape measures, layout chalk, laser, marker paint
- Rebar/mesh chairs, tubing uncoiler, tie tools
- Pressure-test pump (water), calibrated pressure gauge
- Vacuum/purge assembly with drain/flush hoses
- IR thermometer or surface probe (for commissioning)
- PPE: safety glasses, gloves, hearing protection, silica-rated respirator as needed

5. Pre-Install Coordination

- Confirm design package: room-by-room loads, target water temps, loop spacing, loop length limits, and manifold zoning.
- Review structural details: slab thickness, reinforcement, joint plan (control, expansion, isolation), and any thickened edges or FPSF (frost-protected) details.
- Confirm finished flooring: allowable floor surface temperature, max moisture, and radiant compatibility.
- Schedule: pressure test witness, pour day personnel, saw-cut timing, and inspection requirements.

6. Sub-Base Preparation

- Grade and compact per geotechnical/structural requirements; provide a uniform, level support and capillary break where required.
- Remove debris and sharp objects that could damage the vapor retarder or insulation.
- Verify elevations for finished floor, slab thickness, and door thresholds.

7. Insulation & Vapor Retarder

- **Field insulation:** Install rigid foam across the slab area per energy code and design. Use appropriate compressive strength (PSI) for load conditions.
- **Perimeter insulation:** Provide continuous vertical edge insulation at slab perimeter; extend above the insulation plane as detailed. In frost regions, follow FPSF designs if applicable.
- Vapor retarder: Place under the slab (above insulation unless detailed otherwise). Lap seams per manufacturer, tape seams, and seal all penetrations. Keep surface clean for reinforcement placement.

8. Reinforcement (WWR/Rebar)

- Place reinforcement on chairs so steel sits at approximately mid-depth of the slab.
- Maintain designed clearances from edges and penetrations.
- Do not drag mesh or rebar over the vapor retarder without protection.

9. Tubing Handling & Placement

- **Tube type:** Use oxygen-barrier PEX or PEX-AL-PEX suitable for hydronic heating.
- **Bend minimums:** Respect the manufacturer's minimum bend diameter (typical guidance: 1/2" ≈ 6" min; 5/8" ≈ 7"; 3/4" ≈ 8"—verify with your tubing spec).

- Wall offsets & obstacles: Keep 4–6" off framed walls. Avoid areas under permanent cabinets, floor registers, toilet flanges (keep ≥8"), and fastener zones.
- Depth & cover: Keep tubing at or below mid-depth with ≥1" concrete cover above the tubing after finishing.
- **Fastening:** Tie tubing to reinforcement at intervals (about every 24–30" straight runs, closer at bends). Add stakes or anchors to prevent float during the pour.
- **Protection:** Use sleeves or conduit where tubing exits the slab and anywhere it is exposed to potential damage.

10. Layout Patterns & Spacing

- **Common spacings:** 6", 9", or 12" on-center. Tighten spacing near high-loss perimeters and large glazing.
- Patterns:
 - o Counterflow spiral for uniform surface temperatures.
 - Serpentine where simple routing or rectangular rooms favor it.
- **Loop balance:** Keep loops on the same manifold within ~10% total length of each other (including leaders) to simplify balancing.

11. Loop Lengths & Hydraulics

- Typical planning range (1/2" tubing): ~250–330 ft per loop, then confirm by headloss calculations for the selected pump and design ΔT .
- Record the measured length of each loop and label it at the manifold. Maintain a loop schedule in the as-built documents.

12. Manifold Location & Mounting

- Locate manifolds to minimize leader lengths and ease service access. Consider visibility for gauges and air vents.
- **Temporary mounting for layout day:** Secure the manifold to a rigid backer or cabinet framing at the planned elevation. Protect and cap all ports.

• **Penetrations:** Use long-sweep elbows and sleeves at slab entries. Group and label leaders neatly.

13. Joints: Control, Expansion, and Isolation

- Control joints (saw-cuts): Coordinate tube routing to avoid cuts. Where crossing is unavoidable, route the tubing at the **bottom of the slab** in a short protective sleeve centered on the joint. Typical saw-cut depth ≈ 1/4 slab thickness (verify with the finisher/engineer).
- **Expansion/isolation joints:** Use protective sleeves below slab level and place a thin poly "slip sheet" over the sleeve so the concrete doesn't bond to it. Keep tubing clear of dowels, waterstops, and load transfer devices.

14. Pressure Testing

Follow your local code and the tubing manufacturer's instructions.

- Preferred: Hydrostatic pressure test (water). Common practice is 100 psi (690 kPa) minimum for ≥30 minutes before concrete placement. Many specs also require maintaining a visible test pressure throughout placement and finishing.
- **Air testing:** Only where allowed by the authority having jurisdiction **and** tubing manufacturer. If permitted, use dry, regulated air with safety controls. **Never** use flammable gas.
- Procedure (typical):
 - 1. Cap all circuits at the manifold.
 - 2. Fill with water and purge air from each loop.
 - 3. Pressurize to test pressure and hold ≥30 minutes; inspect for leaks.
 - 4. Restore/maintain ~30–60 psi during the pour so damage is immediately obvious.

15. Concrete Placement & Finishing

Keep tubing under pressure during placement and saw-cutting.

- Use placing methods that prevent tubing displacement. Do not hook or snag tubing with tools or rebar.
- Vibrate and finish per concrete best practices; avoid aggressive bull-floating directly over shallow tubing.
- Maintain cover—do not pull tubing upward.

16. Saw-Cutting & Joint Treatment

- Cut control joints on the finisher's schedule to preempt random cracking. Do **not** saw where tubing is present.
- Where a crossing was planned, confirm tubing is at the bottom of slab in a sleeve centered on the joint. Maintain pressure during cutting.

17. Curing, Initial Heat-Up, and Flooring

- Cure the slab per specification. Do not operate the system to accelerate cure unless directed by the engineer/finish spec.
- Initial heat-up: After the slab reaches required strength and moisture condition, start warm and increase supply temperature gradually (e.g., steps of ≤10 °F per 24 hours) up to design supply temperature.
- Flooring: Follow the flooring manufacturer's moisture and temperature limits. Many comfort standards cap occupied floor surface temperatures around 85 °F (29 °C). Use low-R finishes (tile, engineered products rated for radiant) where response is critical.

18. Controls, Balancing, and Commissioning

- **Controls:** Outdoor-reset or mixing controls are recommended to modulate supply temperature based on outdoor conditions and load. Limit max supply temperature to protect finishes.
- **Balancing:** Set initial flows at the manifold based on design; verify loop ΔT at steady state; fine-tune to achieve uniform surface temperatures.

- Air removal: Bleed at manifolds and high points; confirm operation of automatic air vents.
- **Documentation:** Record final flow settings, supply/return temperatures, and control setpoints. Keep a copy with the owner's documents.

19. Operation & Maintenance (O&M)

- Inspect annually: check system pressure, vents, valves, and any actuators/thermostats.
- Keep a clean strainer (if used) and service the pump per manufacturer instructions.
- If remodeling, **locate tubing** before coring/fastening (use the as-built drawing and a thermal camera/locator).

20. Troubleshooting (Quick Guide)

- **Uneven floor temps:** Re-balance flows; verify air removal; confirm loop lengths and spacing; check supply temperature.
- **Slow response:** Confirm insulation coverage; verify control strategy (outdoor reset); consider perimeter boost zones (within comfort limits).
- No heat in a loop: Check actuator/valve position, flow meter reading, and purge air.
- **Unexpected pressure drop:** Inspect for leaks at manifolds/fittings; isolate loops as needed.

21. As-Built Documentation (Deliverables)

- Final loop layout drawing with circuit IDs and measured lengths
- Manifold location(s) and zoning diagram
- Insulation and vapor retarder details (photos recommended)
- Pressure-test records (date, pressure, duration, witness if required)
- Commissioning log: final flows, ΔT, supply temperature limits, control programming

22. Quick Checklists

A. Pre-Pour Checklist

- Sub-base compacted and level
- Insulation complete (field + perimeter) and protected
- Vapor retarder installed, seams taped, penetrations sealed
- Reinforcement placed on chairs (mid-depth)
- Tubing placed: spacing correct, offsets respected, tied/staked, minimum bends respected
- Sleeves installed at all slab entries and joint crossings; slip sheets set where required
- Manifold mounted; loops labeled with measured lengths
- Hydrostatic pressure test completed and documented (maintain pressure for pour)

B. Pour Day Checklist

- Pressure maintained on all circuits; gauge visible
- Tubing protected at high-traffic and tool staging areas
- Placement and vibration controlled to prevent tubing displacement
- Finish per spec; confirm saw-cut window and depths

C. Post-Pour & Commissioning Checklist

- Joint cuts completed without contacting tubing
- Gradual system heat-up after cure requirements are met
- Loops balanced to design flows; ΔT verified
- Controls programmed (limits and schedules set)
- Owner receives as-built documentation and O&M notes

23. Notes & Best Practices

Keep loops serving the same area within ~10% length for easier balancing.

- Group leaders neatly and protect them with sleeves or conduit where exposed.
- Avoid running tubing through door thresholds unless necessary; protect with sleeves if you must.
- Photograph tubing near penetrations and along joint lines before the pour for future reference.
- Where frost design applies, coordinate slab edges and insulation with local FPSF details.

24. Support

Installation must follow this manual, applicable codes, and component manufacturer instructions. Improper installation can void warranties. For technical support or design assistance (layouts, sizing guidance, control selection), contact:

FloorHeat LLC — Technical Support

Floorheatinfo@floorheat.com • (855) 265-5455 • www.floorheat.com